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We study single bunch stability with respect to monopole longitudinal oscillations in electron
storage rings. Our analysis is different from the standard approach based on the linearized Vlasov
equation. Rather, we reduce the full nonlinear Fokker-Planck equation to a Schrddinger-like equation
which is subsequently analyzed by perturbation theory. We show that the Haissinski solution
[Nuovo Cimento Soc. ltal. Fisl8B, 72 (1973)] may become unstable with respect to monopole
oscillations and derive a stability criterion in terms of the ring impedance. We then discuss this
criterion and apply it to a broadband resonator impedance model. [S1098-4402(99)00034-8]

PACS numbers: 29.20.Dh, 29.27.—a

[. INTRODUCTION mode. Also, by definition of action-angle variables, the
unperturbed Haissinski solution has monopole azimuthal
Single bunch longitudinal instability is one of the factors structure. These two features of the monopole mode
limiting the performance of electron storage rings. Theo-explain why it is omitted from the standard linearized
retical analysis of this instability is usually based on theVlasov analysis. Indeed, in that approach the sole effect
Fokker-Planck equation for the particle distribution func-of radiation terms in the Fokker-Planck equation is that
tion. This equation includes the effects of both dynamicthey define the Haissinski solution which subsequently
(Hamiltonian) and stochastic forces. The Hamiltonian partancels them out, so that only Hamiltonian terms remain
describes the synchrotron motion while radiation terms acin the linearized Vlasov equation. The possibility that
count for the (much slower) effects of the synchrotrona perturbation is monopole, but with radial structure
radiation and define the rms beam size at low intensitydifferent from the Haissinski solution, is neglected.
The steady state solution of the Fokker-Planck equation In this paper we are exploring the possibility that an
was first obtained in 1973 by Haissinski [1] and sinceinstability can be associated with the monopole mode.
then it was confirmed in numerous experiments held beRather than extending the linearized Vlasov technique we
low the instability threshold. Unfortunately, apart from afind it more convenient to transform the Fokker-Planck
few limiting cases, finding other possible solutions of theequation to a Schrédinger-like equation and then analyze
Fokker-Planck equation that could account for the instathe latter using the Haissinski solution as a basis. The
bility turned out to be quite difficult. This is why much advantages of this approach are that it is tractable and
of the analysis to explain the instability was done utiliz-it conveniently allows us to use some well-known facts
ing the linearized Vlasov equation technique, where the@bout Schrédinger equation solutions.
Fokker-Planck equation was linearized with respect to the The only essential approximation that we make in this
Haissinski solution. In this approach the Haissinski solupaper is that we assume that the monopole mode can be
tion is also used to introduce the action-angle variables thatonsidered separately from other azimuthal modes. This
make the Haissinski Hamiltonian independent of angleis by no means general. On the contrary, it is known
which results in great simplification of further analysis. that, for example, some collective instabilities result from
The linearized Vlasov equation technique naturallyazimuthal mode coupling; hence, concentrating on one
leads to the concept of azimuthal phase space modes thabde in that case would be inappropriate. However,
are basically the components of the perturbation to that lower intensity, when incoherent frequency shifts are
Haissinski solution with certain azimuthal symmetry. Thesmall compared to the synchrotron frequency, the cross
first three of such modes are sketched in Fig. 1. Notealk between different azimuthal modes is negligible.
that in this figure and throughout the rest of the papeiVhether a monopole mode or any other single azimuthal
we assume the simplest phase space topology, whemode can become unstable at this low intensity is, in
action-angle variables can be defined uniformly across theur opinion, a quantitative question that depends on the
whole plane. In other words, we neglect the possibility ofexact measure of the storage ring impedance. In fact,
several potential well minima. there are computer simulations for model impedances [2]
As seen from Fig. 1, the monopole mode is quiteshowing that radial modes that belong to one azimuthal
special because, in contrast to other modes, its physicahode become unstable before any significant azimuthal
space projection does not change significantly on the timenode coupling occurs. Of course, if a monopole mode
scale of a synchrotron period. This argues that radiationloes become unstable by itself, its independence from the
rather than Hamiltonian forces define the dynamics of thisther modes applies only to the initial stage of instability.
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Monopole Dipole Quadrupole

FIG. 1. Example contour plots of the lowest three azimuthal modes.

The nonlinear stage may be rather complex and it fallsvhere N is the number of particles in a bunch, is the

beyond the scope of this paper. classical electron radius, andis the ring circumference.
Another argument to justify an independent consid-We have also defined a dimensionless function

eration of the monopole mode refers to separate time x

scales in this problem. Specifically, if we assume that Sx) = aof dx' W(oox') (5)

the monopole mode instability develops slowly compared 0

to the filamentation time, then the whole beam effectivelyin terms of the wakefield (z) for two particles separated

maintains its initial monopole structure. Quantitatively, by distancez. Causality was assumed in the form

this amounts to a requirement that the incoherent freW(z) = 0 for z < 0.

quency spread characteristic of the Haissinski equilibrium The Fokker-Planck equation (2) has a steady state

be much higher than the radiation damping rate. Such kHaissinski solution [1]

condition is not unusual for many electron storage rings. pux, p) = Zye Hnter), 6)

II. NOTATION AND BASIC EQUATIONS where

L . 2
For a relativistic bunchy = E/mc? > 1, longitudinal Hy(x, p) = p
dynamics is conveniently described in dimensionless vari- 2 2
ables

2

+Afdx’d’ o, pSG = x), (7
x=z/oo, p=-8/8 F=wug, (1) P pu(x', pH)S( ). (M)

wherez is the position of a particle with respect to the @1dZp is a normalizing factor. Explicit forms gé, and
bunch centroid{ > 0 in the head of a bunch) is the x can be obtained numerically. _

relative energy spreaflE/E, andw,, is the synchrotron ~ Canonical transformation fronx, p to action-angle
frequency. The subscript “0” refers to zero-current equi_varlablesj,_¢> can be defined to make the Hamiltonian
librium quantities, related by,goo/c = |a|8y, wherea  Hr Phase independentiy; (x, p) — Hu(J).

is the momentum compaction. The Fokker-Planck equa- Haissinski particle density; in these variables de-
tion for the distribution functiorp (x, p, #) in these vari- Pends only onJ, and arbitrary distribution function

ables can be written (e.g., [3]) as p(.¢.7) = pu(J) + 6p(J,¢,7) can be expanded in
5 5 (4 azimuthal harmonics
p y p .
3_~ +{H,p}p,x: J a_(a_ +PP>, (2) ~ o\ ime
7 @so Ip \9p pU,¢.7) = pu() + D Spu(, 7)™ (8)
where{- - -} denotes the Poisson bracketfx, p, 7) is the o m=e
self-consistent Hamiltonian Similarly,
2 2 2
H(x,p,%)E%Jr% H(, $,7) = Hylx, p)

+ Af dx'dp' sp(x',p',7#)S(x" — x)
+ A]dx’dp’p(x’,p’,%)S(x’ - x), (3)

andp is normalized ag dp dx p(x, p,7) = 1. We have = Hy(J) + D 8Hu(J,7)e?, 9)
neglected the nonlinearities of the rf potential well and k=
defined the parametét as where
N
= Cy;()&z’ (4) SH(J,7) = AZ[ dJ' Sim(J,J)6pr(J', %), (10)
0 m
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and Note that in our derivation we allow arbitrary time

1 imeb—i dependence ofi (J, 7).
Sk,m(J’J/) = %[ dd) d¢/elm¢ —ik¢

;L [ll. TRANSFORMATION TO A
XS0 — 2. ¢). (11) SCHRODINGER-LIKE EQUATION

In the J, ¢ variables the form of the left-hand side of
the Fokker-Planck equation is unchanged, appearing as i
Eq. (2). The right-hand side can be obtained using th
invariance of the Poisson brackets [4]. Namely, for any,

The Fokker-Planck equation (19) has a standard
Jhe-dimensional form that permits transformation to a
chrodinger-like equation [5]. Let us introduce a new
independent variable

F = F(x,p),
J
%;P) e Fhy = 5 o v =0 = [“arnow (20)
and two functions
=i(§;F) a(;)(axF). (12) 1
= - ,0(kmn)2 21
Hence, for the zeroth Fourier harmonigy(/,7) = fy.7) D(J(y)) ¢ UML), D
(p(J, P, 7)), where(- - -) defines phase averaging, we have
9 9 [ ox - ®(y,7) = H(U(y),7) — (1/2)InD((y)),  (22)
T+ Hopoks = 5 (ﬁF) (13)
whereJ(y) on the right-hand side of Egs. (21) and (22)

where F = dp/ap + pp. On the other hand, for any is given implicitly by Eq. (20). Now the Fokker-Planck
Hamiltonian H = p?/2 + U(x,#), the canonical mo- equation (19) takes the form

mentum can be found ag = {x,H}4,. Therefore, if i 92

we neglect nonzero azimuthal modes by assunfihg -
H(J,%), p = po(J.7), we get or 0y’

2
() R A
or ¢ Us(y,m) = [®'(y,7)/2F — ®"(y,7)/2,  (24)

where

US(y T)f+ _q)(y’ ) ’ (23)

and the dot and the prime denote partial derivatives with

respect tor andy, respectively. This equation is strongly

nonlinear since, according to Eq. (19),is also related to
(15) f by

As discussed earlier, the monopole mode should not

change much on the time scale of a synchrotron period.®(y.7) = A[ dy" Soo(J,J")

This is why time was renormalized above to the radiation

Soo

w(J.7) = % — wp) + A[ dJ' 8 polJ. )

damping constant X [em PO f(y! 1) — e P2 fp (3],
r = yat = (o) wi0)7. (16) (@3)
For thex derivative in Eq. (14), we can write where
2 . 2
0 a .?{ : dr = 1 pdx fu(y) = Zge P2
¢ w(J,7) w(J,T) ! )
J J Cy(y) = Hu(J(y)) + —|n<H—y>, (26)
_ ~ , 17) 2\ IO
wlJ,7)  owyl)
where integration is performed over one synchrotron ]dye"p”(y)/sz(y) =1.

period and the last equality assumes small deviation from
the Haissinski solution. Finally, introducing the diffusion  Note thatfy(y) is the steady state solution of Eq. (23)

coefficient as and it corresponds to the Haissinski solution, as can be
J checked by direct substitution. However, it is not obvious
D) = wn(])’ (18)  how to proceed to other, time-dependent solutions of

Eq. (23). On the other hand, if the term is neglected,

the analysis of Eqg. (23) can be made by analogy with more

ap 9 familiar quantum mechanical problems. Indeed, without
+ 1

aT aJ[ V) olJ, T)pﬂ (19) that term, Eq. (23) can be thought of as a Schrddinger

we can rewrite Eq. (14) as
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equation for a particle in the potential wells(y,7).!  Eqg. (27). In this case,

Whether theb term is negligible for a general case remains

unclear. However, since this term is zero for the Haissinski fly,7) = Z!,//m(y)eﬂ"”, (32)

solution, one can safely neglect it for solutions that are

close tofy. This includes, for example, the important wherey,,(y) are the eigenfunctions of the equation

case of the early time behavior of a system initialized o2

with the Haissinski distribution at = 0. In the next two —n
. . . . 9v2

sections we will follow this approach. Namely, we will y

first analyze Eq. (23) with the last term neglected, and theiherefore, stability of the initial state depends on whether

- US(y»T)‘pm = = At . (33)

account for it by perturbation theory. Eqg. (33) has at least one negative eigenvalye< 0. Let
us look at the possibility that such a negative eigenvalue
IV. SCHRODINGER EQUATION ANALYSIS exists. _ _ _ _ ,
_ . First, the eigenfunctions with the asymptotic behavior
After neglecting theP term, Eq. (23) reads described above are orthogonal and they can be normal-
P 92 ized by
L=l voor @7
| 01y = S0 34)
First, we solve a linear problem for whiah(J) = »° is

a constant. In this case,= 2+/w% and the Schrodinger Hence, an eigenvalue of Eq. (3) is given by

potential is simply 92
2 Ay = _[dy ¢n|:—2 - US(y»T)j|¢n- (35)
1 1 dy
Ug(y) = -5 T T (28) _ _ :

16 2 Ay In spite of a singularity ofUs(y,7) at y = 0, all the
which makes Eqg. (27) a solvable eigenvalue problem. Ieigenvalues of Eq. (33) are bounded from below. Indeed,
is easy to check that the solution is at small distances Wherzﬁz,, /Y, the second derivative

in Eq. (35) gives al/4y* term which cancels a similar
P, = Z PO (y)e M, (29) term in Us(y). In fact, it can be shown that all the
m=0 eigenvalues are higher than the average of the “effective
where potential”’ Vs(y) = Us(y) + 1/4y2.
0 As an example, we consider a broadband resonator
Ay = m, m=0,12,..., (30)  impedance model with shunt impedange, resonance
frequencywg, and guality factorQ. The functionS(z)
Yo (y) = (v/2)2e 7 BL,,(y?/4), (31) inthis case is (e.g., [6])
and L,, denotes the Laguerre polynomial of order I o /2
As expected, the linear problem does not have any ) = AQ¢ sin(or{x)e” 722, (36)
unstable solutions. _/-\n_y ini_tial digtriboution expone_ntially where we defined
approaches the Haissinski solutiafy(y) on the time
scale defined by radiation damping. I =47 AR/Zy, (37)
For the general case;(J) # const, asymptotic behav-
ior of the solution of Eq. (23) is described by the solutions o = wroy/c, (38)
to the linear problem Egs. (28) and (31). Namefyy)
scales as/y at smally and goes to 0 a®(y)e >'/® at {=4/1-1/(20), (39)

large y, .whereP(y) s a polynomiazl. .Sim“af'y’U(y) is and Z, is the impedance of free space. The frequency

quadrﬁtlc gt large and has a-1/4y" singularity asy ap- wH(J) and the effective potentidls(y) for the parame-

proaches ersQ = 1 ando = 3 are shown in Fig. 2 for two val-
Suppose that a bunch is described by the Halssmslﬂes of intensity = 1 and/ = —1. Negative intensity

distribution at7 = 0. By the foregoing arguments, the corresponds to negative momentum compaction, and the
behavior of this system for smah can be obtained from importance of this case will be discussed later. For these
parameters, the effective potential indeed has a minimum
whereVs(y) < 0. At first sight, we could expect a mode
trapped near the bottom of the potential well with the
eigenvalue negative at large current. This, however, is
10f course, the similarity is quite formal. The problem is Not true sinceyy = fx is the solution of Eq. (33) with

purely classical, so nd@ appears anywhere. Also, there is no Ao = 0. Becausg'y(y) does not have zeros, this solution
imaginary constant in front of the time derivative. has the lowest eigenvalue and the reshgfis positive.
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FIG. 2. The incoherent frequenayy(J) and the corresponding effective potenti&g(y) (right) shown for broadban@ = 1
resonator impedance wiith = 3 and two values of intensity = 1 and/ = —1 (dashed line).
Therefore, in this approximation, the Haissinski solu- y) = Un(3) () = = Atha(y) . (45)

tion is stable. How much this conclusion depends on the The above expansion includes the eigenfunction
assumption that thé term in Eq. (23) is negligible can Yo(y) = Zr e~ P2 with Ay = 0. Note that, by the

be analyzed by perturbation technique. same argument as above, the remaining eigenvalues are
positive.
V. PERTURBATION THEORY The linearized Fokker-Planck equation (43) and the

Equation (23), and the condition of self-con5|stency°°nd't'°n of self-consistency (41) lead to the following

[Eq. (25)], is a strongly nonlinear system of equationsSYStem:
We want to analyze it with perturbation theory, assuming C, =D, — A\,(C, + D,), (46)
small deviation from the Haissinski solution. Let us
introduce perturbations as

v(y,7) = HU(y),7) — Hu(J(y)), D, = A%"n,k(ck - Dy), 47)
40
Yy, 7) = f(y,7) = fuly, 7). (40)  where
This gives® = ®y(y) + v(y,7), and kg = fdyd/ (y)e= @)

v(y,7) = A | dy' Soo(J(y),J(y")e P20/ |
f N X fdy/‘/’k(y/)e_q)ﬁ(y)/ZSO,O(J(y),J(y’)). (48)

X L) = (1/2v(y . 41
,[lp(y’T)_ 1/ )v.(y T u(y)] _(_ ) Because of orthogonality, the normalization condition
The perturbation)(y, 7) is normalized by the condition  (42) gives just

]dy Py, m)e Pn/2 = —fdy v(y, 1)e Pn), Co(1) = Do(7). (49)

(42) Since Ay = 0, this is automatically satisfied by Eq. (46)
with the initial conditionCy(0) = Dg(0).

and satisfies the equation . . . .
Looking for exponentially varying solutions,

W _ Y C, = a,e*”,D, = b,e*”, we transform the system
Y =1 _ U + — + q)/ ! . n ane” " , Uy n€" ", ! ; Y
aT dy? n fH[v v Hv(]43) of Egs. (46) and (47) to the matrix equation
. . bk)lk
Let us expandys and v in series over orthogonal = _2AZKnk (50)

eigenfunctionsy,,

% The solution of this equation is given by the roots of the
Yy, 7) = Z Co(7) i, determinant for the matrix

- 44 nkA

, & (44) M =6, + 2A —nkZE (51)
v(y.7) = —= > Dulm)e™ 2y, rot A

H m=0 Positive rootsw > 0 would mean instability to monopole

We assume that eigenfunctioig satisfy the equation excitation of a bunch.
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Since the matriX is infinite, it is unclear how to find 0
its determinant in the general case. However, it is easy 5!
to see that off diagonal terms @&f, ; are small, while the
diagonal terms quickly converge to zero. This is why we

Stable

T

expect that a good approximation for the roptscan be 5| Unsiable
found by truncating the matri®/. If we truncate matrix
M to the lowest nontrivial rank ; 2T
MO = ( L2y ) &
0 1+ 2Aki1 55 ’ 3T
then a zero determinant occurs for 357
w=—A(1 + 2Aky;). (53) 4
Becauser; > 0, this root is positive when 2 05 1 15 2 25 3
2Ak1) < —1, (54) i

FIG. 3. lllustration for the monopole instability criterion
and this may be viewed as the criterion for the onset ofEq. (54)] for broadband(Q = 1) resonator impedance for
the monopole instability. negative momentum compaction and intendity= —1. Nu-

: merical calculation was done using Egs. (56) and (57), where
It is easy to see, however, that usualkf, > 0. w(J) was assumed constant ag#gd was taken from the solution

Indeed, let us introduce the impedaritie’) so that to the linear problem (31).
dv —ivz/c
W(z) = / 5, Zwe . (55) VI. DISCUSSION
Then We have investigated single bunch stability with respect
to longitudinal monopole oscillations. These oscillations
200 ((dv Z(v) . :
Kuk =175 | o F,(v)F¢(v), (56) may become unstable as a result of an imbalance between

radiation excitation and damping. Since this phenome-

where i non falls beyond the coverage of the linearized Vlasov
_ wp(J) —Ha )2 approach, we chose to employ a different technique that

Falv) = f dj( J ) ¢ Y (y(7) has not been used for instability analysis. This technique
involves the transformation of the phase-averaged Fokker-

X [ de e'?roxV-d)/e, (57) Planck equation to a Schrodinger equation with an addi-

tional term arising from the self-consistent potential. This

Now «i; depends onF(v)|> which is a positive and Schrodinger equation is analyzed similar to quantum me-
even function ofy. Hence,x;; is given by the odd part chanics and the effects of the additional term are found by
of the impedance, Ii#(»), which is negative for inductive perturbation analysis.
impedance and positive for capacitive impedance. As a Utilizing this technique we have obtained a simple cri-
result, for the most common case of inductive impedanceerion, Eq. (54), for the onset of monopole instability. Ac-
and positive momentum compactiohx;; > 0 and the cording to this criterion, monopole mode instability does
Haissinski solution is stable. not appear in the most common case of storage ring op-
However, the situation is not that simple for negativeeration with positive momentum compaction when the
momentum compaction or in the case of capacitivampedance is largely inductive. However, for the case
impedance. Each of these conditions has been proposed negative momentum compactioa, < 0, as we have
by various authors to get shorter bunches and also asillustrated in Fig. 3, bunches may become monopole un-
remedy against longitudinal instabilities. For illustration, stable at modest intensity. We expect a similar behavior
we continue our example of the broadband resonatdior the somewhat rare case of predominantly capacitive
model forQ = 1. Using Egs. (56) and (57), we numeri- impedance and > 0.
cally compute the quantit A« ; as a function ofo at As discussed in the Introduction, the essential assump-
intensity/ = —1. The result, together with the threshold tion we make in our analysis is that the monopole mode
value given by Eq. (54), is plotted in Fig. 3. It shows thatcan be considered separately from the rest of the azi-
a bunch is monopole unstable at this intensity providednuthal modes. This assumes the absence of azimuthal
its zero current length exceeds about one-twelfth of thenode coupling which implies some limitations on the
resonator wavelength. Note that, according to Fig. 2, thigrowth rate of the instability. It also assumes that the
intensity is not high at all since, for example, for= 3,  other azimuthal modes are stable by themselves. It is
it leads only to about a 5% increase in the incohereninteresting that, since the monopole instability criterion
frequency spread. Eq. (54) effectively includes only the imaginary part of
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impedance, the second assumption is rather relaxed. Igolution with A = 0, there exists an exponentially grow-
deed, as follows from the linearized Vlasov analysis, theng solution of the Schrédinger equation that has a nega-
azimuthal modes, other than monopole, become unstaive eigenvaluer < 0. This could qualitatively explain
ble due to the asymmetry in the Haissinski potential thathe relaxation oscillation behavior seen in many numeri-
comes from the real part of impedance. (We omit a someeal and real life experiments.

what exotic possibility of multiple minima in the Haissin-

ski potential.) Therefqre, mpnopole mode instability can ACKNOWLEDGMENTS

exist when the remaining azimuthal modes are stable.
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